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The problem of determining the coefficient of heat transfer is analyzed as an in- 
verse problem for the heat-conduction equation. The results of a calculation of 
the coefficient of heat transfer on the basis of experimental data on the jet cool- 
ing of metal plates are presented. 

The jet cooling of metal (cooling of a continuous ingot, thermal treatment of manufac- 
tured articles and intermediate products, etc.) is widespread in metallurgical production. 
Data on the local (effective) coefficient of heat transfer a as a function of the surface 
temperature T sur of an ingot [I] are required for the calculation and design of systems and 
the attainment of the optimum modes of cooling. The appropriate data in the literature are 
inadequate, however. 

The experimental determination of the boundary temperatures or fluxes needed for the re- 
construction of ~ and the temperature field in the entire volume of a body is strongly hin- 
dered and sometimes impossible owing to the high intensity of heat exchange and the sharp 
fluctuations in the heat load characteristic of jet cooling. Moreover, it is often impos- 
sible to reliably measure the temperature of one or several internal points of the body. In 
such cases the problem of reconstructing the unknown boundary conditions is formalized in the 
form of an inverse problem of heat conduction, which has raised great interest in recent 
years (for example, see [2, 3] and the literature cited there). 

We considered three approaches to the solution of this inverse problem, corresponding to 
the reconstruction of one of three kinds of boundary conditions atthe heat-exchange surface. 
The relative effectiveness of the proposed methods and of the regular-regime method [4],which 
is widespread in engineering practice, is studied. 

Within the framework of the one-dimensional model the process of heat propagation in a 
solidified ingot (plate) being cooled can be represented as a boundary-value problem for the 
heat-conduction equation 

OT OZT cp - -D , O < x < L ,  O < x ~ O ,  (1) 
O~ Ox z 

T[T=o= T~ O < x < L ,  (2) 

- - D  OTox . =L =0 '  0 < ~ 0  (3) 

with one of the following boundary conditions at x = 0: 

Ti~=o = Tsur(T), 0<T~ 0, 

- - D  OT 
Ox ~=o=q(T ), 0< ' r~0,  

- -  D OT = - -  ~ ('~) (T[~=o - -  TW(~)), 0 < "r ~.~ O. 
Ox Jx=o 

(4) 

(5) 

(6) 
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Here c, 0, D, L, and 0 are assigned constants; T~ and TW(r) are assigned functions. 

The functions Tsur(T), q(r), and e(T) in (4)-(6) are not assigned a priori. Instead, 
the temperature Te(r) of the specimen at x = Z C [0, L] is assumed to be assigned: 

T!x=Z- Te(x), O < T ~ O .  (7 )  

The  p r o b l e m s  o f  t h e  r e c o n s t r u c t i o n  o f  t h e  u n k n o w n  f u n c t i o n s  T s u r ( x ) ,  q ( r ) ,  a n d  ~ ( x )  f r o m  
the conditions (1)-(7) belong to the class of inverse problems of heat conduction. 

Many methods for minimizing the functionals estimating the discrepancy in the fulfillment 
of the condition (7) are effective algorithms for the solution of inverse problems. The square 
of the norm in L2 of the departure of the calculated temperature T[x= Z from the assigned "ex- 
perimental" temperature TO(T) can serve as an example of such a functional: 

8 
J =  ~ [T~=t-- T~z)]2dz. ( 8 )  

o 

One of the functions Tsur(T), q(T), or ~(T) serves as the argument of the functional 
(8), depending on whether the temperature T(x, T) is the solution of the boundary-value prob- 
lem (1)-(3) with a boundary condition of the first (4), second (5), or third (6) kind, re- 
spectively. In the last case the function ~(r) realizing the minimum of the functional (8) 
is, under certain assumptions, the unknown coefficient of heat transfer. If the criterion 
(8) is minimized with respect to the quantities Tsur(z) or q(r), then the unknown coefficient 
of heat transfer ~(T) is reconstructed from Eq. 
mined through the solution of the corresponding 
pendence of the coefficient of heat transfer on 
can be found by eliminating the variable Z from 
rained. 

(6), where the temperature T(x, T) is deter- 
inverse problem of heat conduction. The de- 
the temperature of the surface being cooled 
the functions e(T) and T(0, T) = Tsur(T) ob- 

Gradient methods of minimizing functionals are the most common. The use of these meth- 
ods to minimize functionals of the type of (8) is complicated by the fact that the latter are 
not assigned explicitly but through the solution of some boundary-value problem. The tech- 
nique developed in [5, 6] for calculating the gradients of such functionals allows one to 
find the value of the gradient using the so-called conjugate boundary-value problem, which 
is no more than twice as complicated as the determination of the value of the original func- 
tional in terms of the difficulty of the calculations. Making [5, 6] concrete, let us de- 
scribe the algorithms for calculating the gradients of the analogs of the functional (8) for 
the three kinds of its enumerated agreements. 

In the segments 0 5 x 5 L and 0 ~ T ~ 0 we introduce grids (uniform, for simplicity of 
the presentation) with nodes x i = ih, i = 0, ..., N; zj = jS, j = 0, ..., n; h = L/N; 8 = 0/ 
n (N and n are assigned natural numbers). The approximation of the value of T(xi, Tj) is 
designated as Tij. The following equations are the difference analogs of Eqs. (i)-(3), con- 
structed on an implicit four-point scheme with an approximation order O(T + h 2) [7]: 

T~j - -  Ti i- i  T i - l i  - -  2T~i + T~+li 
- - D  , i ~ I . . . . .  N - - 1 ,  (9 )  cO ~ h 2 

j = l  . . . . .  n, 

T~o = T O (xO,  i = 0 . . . . .  N ,  (i0) 

D Tm--ITN-,i h T,v~-- TNi-l -- =--cp , j= I, ..., n. (ii) 
h 2 6 

The difference analogs of the conditions (4)-(6) are the corresponding expressions 

Toj = 7~i ur, ] = t . . . . .  n,  ( 1 2 )  

- - D  T t j - -T~  h T~176 , ] = 1 . . . . .  n, ( 1 3 )  
Iz = q j + Y co 6 

Here T ur, 
respec~ivelq! 

h Toj ~ To:-, - - D  T u - - T ~  - c ~ j ( T o j - - T W ) + - ~ c p  - -  , i : l  . . . . .  n. (14) 
h 6 

, ~i, T~ are the grid analogs of the functions Tsur(T), q(T), a(r), and TW(x), 
E~uations (9)-(11), together with one of the conditions (12)-(14), form a 
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difference boundary-value problem from which, with assigned grid functions T~ ur qj, or aj 
one can determine the grid function Tij, by the trial-run method, for exampl~. 

Tsur The following implicitly assigned function of the variables _j , qj, or aj is the dif- 
ference analog of the criterion (8): 

J = [ T ~ - -  T (~i)]" 6, (15) 
7=! 

where the natural number, k, k >- I, is chosen so that the grid node x k approximates the point 
while the grid function Tij is the solution of the corresponding difference boundary-value 

problem. Everywhere below t~e gradient of the functional (15) is understood in the sense of 
the usual norm of the space of grid functions of the type of L= [6]. 

According to [6], the components of the gradient of the functional (15), treated as a 
function of qj, j = I, ..., n, can be found from the equations 

OJ 2 
Oq~ h ~.o~, ] 1 , n, 

w h e r e  ~ i j  i s  t h e  s o l u t i o n  o f  t h e  f o l l o w i n g  c o n j u g a t e  s y s t e m :  

- - c p  ~ 0 1 + ~ - - ~ 0 ~  = D  21~ + ~ i  , ] _ _  1 . . . . .  n,  
6 h z 

--cO ;q ; + ~ -  ~': =D ~2:--2 '%,.~--2)~oj  _ 
6 h 2 

- -  26 (Tk j  - - 7 :  e) 6,~, ] = 1 . . . . .  n, (16)  

. . . .  cP ~'~i+~-->~J D ~ - ~ i - - 2 ~ §  2 6 ( T k j - -  7 je)6~, ,  
h 2 

i = 2 ,  3 . . . . .  N - - 2 ;  ] = l  . . . . .  n, 

--c9 "/.̂ '-,./-',-I --)~:-I~ = D ).N--2~--2)~:,,--I/ + 2)~x: 26(Thi--7~)f::-,.t~ i= 1 n, 
6 h z . . . . . .  

- - c 9  k~,i+, --LA,/ := D )~N--1i-- 2)~X/ 2 6 ( T h j - - 7 ~  6A~ ] = 1, n, 
6 h z . . . . .  

Xi,+l = 0, i == 0, 1 . . . . .  N. 

Here 8ij is the Kronecker symbol. 

Tsur �9 . If the grid function :i , 3 = ", ..., n, is treated as the argument of the functional 
(15), then the components ot the corresponding gradient are found from the equations 

0J 
o7~ur - - - - ~ ' o J ,  ] =  1 . . . . .  n, 

w h e r e  Xi j  i s  t h e  s o l u t i o n  o f  t h e  c o n j u g a t e  s y s t e m  ( 1 6 ) ,  i n  w h i c h  t h e  e q u a t i o n s  f o r  i = 0 and  
i = 1 ,  j = 1 ,  . . . ,  n ,  h a v e  t h e  f o l l o w i n g  r e s p e c t i v e  f o r m s :  

~ 'o . f=D ~ ,  ] = 1  . . . . .  n, 

- - c p  i.li-'.-1--k,, t :_ D ~ .z J -  2~.,i 2 5 ( T k : -  T~. f ih ,  ] = 1  . . . . .  n. 
6 h z 

If the argument of the functional (15) is the grid function aj, j = I, ..., n, then the 
components of the corresponding gradient are found from the equations 

0d 2 
- -  Z0: (T0j - -  T ~ ) ,  ] = 1 . . . . .  n,  

0~j h 

w h e r e  Xi j  i s  t h e  s o l u t i o n  o f  t h e  c o n j u g a t e  s y s t e m  (16)  i n  w h i c h  t h e  e q u a t i o n s  f o r  i = 0 ,  j = 
i ,  . . . ,  n ,  a r e  r e p l a c e d  b y  t h e  f o l l o w i n g  e q u a t i o n s :  

- -  cp ~oi-;-1 --~-oJ D 2)~~ 6-  ~.tJ , 2 
6 h 2 h 

~.o#j, ] = 1 . . . . .  n. 
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The ability to calculate the gradient of the functional (15) allows the use of various 
iteration methods of the gradient type for its minimization. In each iteration of the method 
one must solve two boundary-value problems for the heat-conduction equation: an initial and 
a conjugate problem. Numerical experiments on the solution of a number of model and applied 
inverse problems of heat conduction have shown the sufficiently high effectiveness of gradient 
methods (especially the method of steepest descent and Newton's method) in a wide range of 
variation of the initial approximations of the unknown mode. These experiments allow one to 
evaluate the role of the various parameters of the problem and the algorithm. In particular, 
the reconstruction of a boundary mode is accomplished faster and more accurately if the ad- 
ditional information is assigned closer to the corresponding boundary. The greatest error 
in the reconstruction of a boundary mode is observed at the initial and final times. The 
results are improved somewhat by the use of a gradient of the functional (15) defined in the 
sense of a norm differing from the norm in the space L2 (for example, the norm in the space 
W~) [8]. 

Experiments on model problems have shown the stability of these methods against random 
interference in the input data, with reliable agreement between the accuracy of the calcula- 
tions and the accuracy of the input data and the error of the finite-difference approxima- 
tion. 

Agreement between the value of the functional (15) and the dispersion of the random in- 
terference within the assigned accuracy limits serves as an empirical criterion for stopping 
the iterations. This can be achieved through the appropriate regulation of the step of the 
iteration process (compare with [9], for example). 

The proposed algorithms for thereconstruction of the boundary mode were used to analyze 
experimental data obtained in an investigation of the process of jet cooling of metal [10]. 
The experimental studies were conducted on a laboratory installation simulating the spray 
cooling of a continuous ingot. 

Rectangular plates of brass and copper with a thickness L = 0.014 m were heated to a tem- 
perature of 750-8000C (uniform through the entire mass) in an electric furnace and were then 
cooled in a vertical position by the delivery of water from a plpe containing openings. The 
dimensions of the plate were such that the effect of edge cooling on the investigated tem- 
perature field was practically eliminated. 

The readings of Chromel--Alumel thermocouples, whose junctions were caulked at several 
points along the length and at two levels through the thickness of the plates, were recorded 
with an N-700 oscillograph during the cooling process. The secondary instrument and the 
thermocouples were calibrated by measuring the temperatures of melts of aluminum and tin dur- 
ing their crystallization. The error in reading the oscillograms did not exceed • ~ 

The adequacy of the one-dimensional model lying at the basis of the calculation was es- 
timated by reconstructing the temperature field of a plate and comparing the results of the 
calculation with experiment. A comparison of the experimental and calculated data on the 
temperature at one point (at x = Z2), obtained using the readings of a thermocouple at a dif- 
ferent (in depth) point (at x = ~,) as the input data, showed that the disagreement between 
the actual and calculated temperatures does not exceed 5% on the average. 

The surface temperatures obtained in the solution of the inverse problem by the three 
different methods (using boundary conditions of kinds I, II, or III) differ from each other 
by 5% on the average and by no more than 10%. An analysis of the numerical results shows that 
the values of the coefficient of heat transfer obtained in the solution of the inverse prob- 
lem by the second and third methods (in the reconstruction of qj and ~j) differ by an average 
of no more than 2% for the brass plate and by no more than 5% for the copper plate. 

In the solution of the inverse problem by the first method (with the reconstruction of 
sur Tj ) the values of ~j are close to those obtained by the other two methods only for high 

enough surface temperatures (380-650~ For lower values of T sur this method of determining 
~j is connected with greater instability of the computational process, and it cannot be rec- 

ommended for practical work. 

The method of the direct reconstruction of ~j (the third method) has the greatest sta- 

bility. 
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Dependence of coefficient of heat trans- 
fer a (kW/cm2,deg) on the surface temperature 
T sur (~ a) for copper plate; b) for brass 
plate: I) from the results of a calculation by 
the steady-state method; from the results of a 
numerical solution of the inverse problem: 2) 
with an unknown boundary condition of kind I; 3) 
of kind II; 4) of kind III. 

The dependence of the coefficient of heat transfer a on T sur found by each of the three 
methods for the copper plate is shown in Fig. la, while this dependence found by the second 
and third methods for the brass plate is shown in Fig. lb. Graphs of the functions ~(T sur) 
obtained by the steady-state method for the copper and brass plates, respectively, are also 
presented. 

It is seen from the figure that the steady-state method gives a satisfactory approxima- 
tion of a in the cases under consideration. 

We note that the method connected with the numerical solution of the inverse problem is 
applicable to a wide class of problems, particularly for linear problems with variable coef- 
ficients and for quasilinear problems of heat conduction. 

For the fullest evaluation of the effectiveness of the methods under consideration in 
application to the process being studied we carried out a numerical solution of the direct 
problem of heat conduction (1)-(3) with the assignment of the boundary conditions (6) on the 
basis of the data of each method (Fig. I). A comparison of the calculated and experimental 
data on the temperature T(~, ~) showed that in the first case (with the assignment of a cal- 
culated by the steady-state method) the maximum disagreements between them were 13.3% for 
brass and 8.2% for copper, while for the methods connected with the numerical solution of the 
inverse problem they were 4.5 and 5.4%, respectively, in the range of T sur = 90-720~149 

NOTATION 

x, spatial coordinate, m; T, time, see; 8, final time; c, heat capacity; p, density; D, 
thermal conductivity; q, heat flux; TW, temperature of cooling water; ~, coordinate of point 
at which temperature is known; J, functional; h, spatial step of grid; 6, time step of grid; 
N, number of grid nodes in space; n, number of grid nodes in time; ~, solution of conjugate 
system. 
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IMPURITY DISTRIBUTION IN A MELT CRYSTALLIZING WITH 

CONVECTION CAUSED BY CONCENTRATION GRADIENTS 
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I. L. Povkh, and O. N. Lukicheva 
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Numerical calculations on a model show that concentration-dependent convection has 
a marked effect on the impurity distribution in the solid. 

Chemical nonuniformity arises in the crystallization of a melt because of partition of 
impurities in the two-phase medium when there is a moving phase interface; the exact distribu- 
tion is also dependent on the mixing occurring in the core of a casting. Concentration-in- 
duced convection is one of the main causes of mixing. 

Here it is assumed that the temperature differences arising at T # 0 on reducing the 
temperature of the boundaries to the crystallization point are insufficient to produce ther- 
mal convection in the melt. 

The solubility difference between the solid and liquid phases causes spatial nonuniformity 
in the impurity pattern. The liquid core of the solidifying melt therefore shows convection 
whose direction is dependent on the density relationship between the impurity and the parent 
melt. We have made a numerical study of the impurity distribution occurring under such con- 

ditions. 

The melt has an initial temperature To (reasonably close to the crystallization point) 
and fills a rectangular semiinfinite region in which the dimensions of the vertical cross 
section are L, • L2 at time r = 0; at that instant the melt is immobile and the impurity and 
temperature are uniformly distributed over the cross section. 

The impurity distribution in the initial solution is taken as being 0.1-0.3%, so we take 
the phase-transition boundary as being isothermal, while the crystallization front migrates 
into the liquid region in accordance with a square-root law. It is assumed that the solidi- 
fication occurs in all directions at the same rate: 

= - = - V F &  = = 

The transport of momentum and of the impurity is described for an incompressible liquid 
in general by a system of equations that includes the Navier-- Stokes equation, the equation 
for mass transport, and the equation of continuity. 

The characteristic velocity and the characteristic pressure difference are defined by 
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